Новости науки, здоровья и космоса на портале GlobalScience.ru. Информеры для владельцев сайтов. Создайте свой собственный новостной сайт, используя наши бесплатные новостные информеры.
Конструктор новостных информеров
17/09/2019

Разработана концепция гибридного реактора на основе плазменной открытой ловушки

Разработана концепция гибридного реактора на основе плазменной открытой ловушки

Специалисты трех российских институтов (Российский Федеральный Ядерный Центр – Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина - РФЯЦ-ВНИИТФ; Национальный исследовательский Томский политехнический университет – ТПУ; Институт ядерной физики им. Г. И. Будкера СО РАН – ИЯФ СО РАН) провели компьютерное моделирование топливного цикла ториевого гибридного реактора, в котором в качестве источника дополнительных нейтронов используется высокотемпературная плазма, удерживаемая в длинной магнитной ловушке. Среди преимуществ такого гибридного реактора по сравнению с используемыми сейчас ядерными реакторами можно отметить умеренную мощность, относительно небольшие размеры, высокую безопасность при эксплуатации и малый уровень радиоактивных отходов. Исследования по этой тематике поддержаны грантами РНФ № N 14-50-00080 и РФФИ №19-29-02005. Результаты опубликованы в журнале Plasma and Fusion Research.

Для получения энергии гибридные ядерно-термоядерные реакторы используют одновременно реакции деления тяжелых ядер и синтеза лёгких, поэтому можно ожидать, что такие установки усилят положительные особенности и нивелируют недостатки, присущие энергетике на основе раздельного использования этих ядерных реакций. Для эффективного использования реакции управляемого термоядерного синтеза в производстве энергии необходимо сначала получить, а затем постоянно поддерживать стабильное состояние плазмы с очень высокой температурой (выше 100 млн. °С) при её высокой плотности.

Создание реактора, работающего по гибридной схеме, представляется более легкой задачей, поскольку в этом случае плазма используется не для получения энергии, а всего лишь в качестве источника дополнительных нейтронов для поддержания необходимой схемы протекания ядерных реакций. Таким образом, требования, предъявляемые к ее характеристикам, становятся менее жесткими.

В условиях, когда в плазме генерируются нейтроны, дополнительно поступающие в ядерный реактор, появляется возможность заменить большую (до 95 %) часть используемого в качестве топлива делящегося урана на неделящийся – сырьевой - торий. В отличие от урана торий представлен в природе практически одним изотопным состоянием, и поэтому он легко и с малыми затратами выделяется из природного сырья. При поглощении нейтронов изотоп тория 232Th превращается в изотоп урана 233U, который хорошо делится тепловыми нейтронами. По количеству выделяемой энергии эта реакция сопоставима с реакцией, используемой в ядерных реакторах с топливным циклом, использующем только природные изотопы урана 235U и 238U.

схема гибридного реактора

Особенность применения ториевого топлива состоит в том, что в такой гибридной энерговыделяющей установке при прекращении поступления дополнительных нейтронов от внешнего источника ядерные реакции деления сразу же затухают. Таким образом, гибридные реакторы на ториевом топливе не способны к «саморазгону», что обеспечивает значительно большую безопасность ториевой энергетики. В настоящее время уже существуют различные проекты гибридных реакторов, в которых плазменным источником нейтронов служит токамак. Альтернативой может стать использование в качестве источника дополнительных нейтронов длинной магнитной ловушки. Команда исследователей, сформированная по инициативе ученых ИЯФ СО РАН, в которую также вошли специалисты ТПУ и РФЯЦ-ВНИИТФ, представила концепцию относительно компактного реактора такого типа.

О принципах работы длинной магнитной ловушки в качестве источника нейтронов рассказывает главный научный сотрудник ИЯФ СО РАН, доктор физико-математических наук, профессор Андрей Аржанников: «На начальном этапе при помощи специальных плазменных пушек создается относительно холодная плазма, количество которой поддерживается дополнительной подпиткой газом из атомов тяжелого водорода - дейтерия. Инжекция в такую плазму нейтральных (атомарных) пучков с энергией частиц масштаба 100 кэВ обеспечивает образование в ней высокоэнергетичных ионов дейтерия и трития (это тяжелые изотопы водорода), а также поддержание необходимой температуры. Сталкиваясь друг с другом, ионы дейтерия и трития соединяются в ядро гелия, при этом происходит выделение высокоэнергетических нейтронов. Такие нейтроны беспрепятственно выходят через стенки вакуумной камеры, где магнитным полем удерживается плазма, и поступая в область с ядерным топливом, после замедления поддерживают протекание реакции деления тяжёлых ядер, которая служит основным источником выделяемой в гибридном реакторе энергии».

схема заполнения блока ядерным топливом

По словам Андрея Аржанникова, энергия нейтронов настолько высока, что они пронизывают стенки камеры из нержавеющей стали и медную обмотку, которая обеспечивает необходимое магнитное поле в плазме. Эти нейтроны глубоко проникают в топливную сборку (бланкет) ядерного реактора и попадают на графитовые блоки, где при рассеянии на ядрах углерода происходит их торможение. Замедленные нейтроны хорошо поглощаются ядерным топливом и поддерживают необходимый уровень количества делящихся ядер в единицу времени. Выделившаяся в виде тепла энергия разлетающихся фрагментов ядра, делящегося при поглощении нейтрона, снимается потоками газообразного гелия, который под высоким давлением прокачивается через цилиндрические каналы в топливной сборке. Топливо также размещается в специальных каналах, для этого оно заключено в специальные цилиндрические графитовые стержни. Эти стержни заполняются покрытыми защитным слоем из карбида кремния микрокапсулами, содержащими торий и небольшой процент энергетического или оружейного плутония. «Торий-232 (232Th) – это воспроизводящий или, как еще его называют, сырьевой изотоп, который при захвате нейтрона превращается в делящийся изотоп уран-233 (233U). – рассказывает руководитель Отделения естественных наук, заведующий лабораторией ТПУ, доктор физико-математических наук, профессор Игорь Шаманин. – Ядра плутония в ториевой топливной композиции выполняют функцию запала.

Плутоний, оружейный или энергетический, делится тепловыми нейтронами и позволяет поддерживать в размножающей системе цепную реакцию деления. Через некоторое время после "старта" ядра плутония выгорят, а в системе установится режим, в котором скорость наработки ядер урана-233 станет равна скорости выгорания этих ядер. Размножающая система станет самодостаточной». Топливный цикл проектируемой установки составит 3000 эффективных суток (эффективные сутки – это 24 часа работы при 100% уровне мощности) - по истечении этого срока блоки с выгоревшим топливом заменяются на свежие, и реактор готов к новому топливному циклу. При этом, стартовый состав ядерного топлива выбран так, что в течение всего периода работы размножающие характеристики реактора позволят эксплуатировать его на проектном уровне мощности при соблюдении всех требований безопасности. «На протяжении всего периода работы установки изотопный состав, а вместе с ним и ядерно-физические свойства топлива меняются - «просчитать» эволюцию ядерного топлива с учетом множества реакций, происходящих в нем, помогает компьютерное моделирование. – рассказывает начальник лаборатории РФЯЦ-ВНИИТФ, кандидат физико-математических наук Владимир Шмаков. – На сегодняшний день мы смоделировали эту эволюцию для нашей гибридной установки и рассчитали режимы работы реактора в течение топливного цикла, в дальнейшем нам предстоит также смоделировать различные режимы поступления нейтронов из плазменного источника и выбрать оптимальный вариант для обеспечения работы реактора».

Сейчас ученые также рассматривают возможность создания экспериментального стенда на реакторной площадке ТПУ, который будет состоять из ториевой топливной сборки и нейтронного источника на основе инженерно-технических решений, уже реализованных на открытых ловушках ИЯФ СО РАН.

Источник - ИЯФ СО РАН

 
Печать
Рейтинг:
  •  
Авторизуйтесь для оценки материала

С этим материалом еще читают:

Крупнейшие российские предприятия займутся созданием ядерного реактора

Группа российских компаний «Рос Атом», совместно с предприятием «Рос космос», уже в скором времени, начнут создание мощнейшего ядерного реактора. Эту информацию сообщило российское агентство новостей, сославший на двенадцатимесячный отчет российского предприятия. По утверждению представителей двух российских гигантов, во всем мире нет ядерного реактора с принадлежностью к выполнению транспортно-энергетических миссий в космосе
 

Ученые из США создали нанореактор для производства водородного топлива

Американские инженеры разработали устройство для производства водорода. В интервью группе журналистов американские ученые рассказали о целях использования реактора. По их рассказам, реактор применят для производства автомобильного топлива. Устройство протестировано и почти готово к работе. Создателями технологического устройства стали ученые инженерного института Индианы. Целый ряд научно-технических экспериментов провели исследователи перед
 

Для колонизаторов Марса создан портативный ядерный реактор

Программисты инженеры национального управления космических исследований штата Айдахо завершили работу по созданию компактного реактора на ядерном топливе. По вновь утвержденной версии научных сотрудников института, реактор будет использоваться в колонизации красной планеты первыми поселенцами. Показатель тепловой мощности созданного учёными реактора составляет 1,6 мегаватта. При этом размер ядерного комплекса
 
 

Еще из категории технологии:

 
 
 

Последние комментарии

 

Комментариев нет. Будьте первым!

Пожалуйста, авторизуйтесь, чтобы иметь возможность оставлять комментарии.
 
 
 
 

Главная | космос | здоровье | технологии | катастрофы | живая планета | среда обитания | Читательский ТОП | Это интересно | Строительные технологии

RSS | Обратная связь | Информеры | О сайте | E-mail рассылка | Как включить JavaScript | Полезно знать | Заметки домоседам | Социальные сети

© 2007-2024 GlobalScience.ru
При полном или частичном использовании материалов прямая гиперссылка на GlobalScience.ru обязательна