Физики увидели тень атома

Австралийские физики создали специальную камеру, при помощи которой можно получать высококачественные фотографии тени, отбрасываемой одиночным атомом во время облучения УФ-светом. В будущем это позволит следить за работой различных компонентов в живых клетках.
Микроскоп уже давно перестал быть единственным средством наблюдения за микромиром. В начале этого века физики разработали несколько новых методов, которые предполагают использование пучка электронов для просвечивания образцов и получения изображений. Разрешение самых лучших просвечивающих электронных микроскопов (ТЕМ) может достигать доли ангстрема, то есть менее 0,1 нм.
Группа австралийских ученых из университета Гриффита, возглавляемая Дейвидом Кильпински, изучила взаимодействие частиц света (фотонов) и ионов тяжелых металлов. Для этого исследования ученые охладили атомы иттербия-174 до температуры, приближающейся к абсолютному нулю. Затем они извлекли один атом этого тяжелого металла и поместили в ловушку Пауля. Эта ловушка представляет собой особую конфигурацию, образованную переменными магнитными полями, что позволяет удерживать ион на месте.
Физики облучали ион металла ультрафиолетовым излучением, пытаясь сконцентрировать его фотоны. С этой целью они использовали специальный оптический прибор – фазовую линзу Френхеля. Она похожа на матрешку из большого количества микропризм, положение и толщина которых подобраны так, что они собирают и усиливают световое излучение.
Как сообщают австралийские исследователи, при помощи удачно сконструированной линзы им удалось получить четкое изображение тени атома. Исследователи отмечают, что эта система остается стабильной на протяжении многих часов, благодаря чему захваченный атом можно изучать неограниченное время. По словам физиков, полученные ими изображения тени атома имеют контрастность, близкую к максимально возможной в данных условиях.
Кальпински и его коллегии уверены, что в будущем развитие их технологии позволит ученым детально изучить процессы, происходящие в клетке, в частности формирование молекул РНК и ДНК и «раскручивание» хромосом. Однако прежде необходимо будет улучшить скорость функционирования светочувствительной матрицы фотоаппарата и разработать такие алгоритмы обработки фотографий, которые бы позволили извлекать максимум качества из минимально контрастных изображений.
По материалам Sciencemagic.ru
С этим материалом еще читают:
Американские ученые обнаружили в помаде токсичные дозы металлов

Банановая кожура очищает воду

Ученые научились смотреть на мир глазами мотылька

Еще из категории технологии:
- Эпоха экзафлопсных суперкомпьютеров наступила — что это значит и на что они способны?
- Частое использование ChatGPT связано с одиночеством и эмоциональной зависимостью
- Стартап по натрий-железным батареям готов бросить вызов литий-ионным батареям для долгосрочного хранения энергии
- ABB разрабатывает высокоманевренный и высокоэффективный морской винт
- Изменения симметрии в крошечных кристаллах под воздействием света позволяют исследователям создавать материалы с заданными свойствами
- Солнечная пленка, которую можно наклеить где угодно для генерации энергии
- Двойно магичное ядро свинца-208 удивляет неожиданными свойствами формы
- Как мозг строит сложные карты для навигации и запоминания мира
Последние комментарии
Рассылка топовых новостей
Читательский топ
- Связь между микробиомом кишечника, воспалением и депрессией
- Древнее дерево рассказало о перевороте магнитного поля Земли
- Почему летучие мыши спят, вися вниз головой?
- Индустриализированные общества спят больше
- Ваш мозг может содержать пластик
- Учёные обнаружили роль митохондрий в формировании памяти
- Нейронный путь у мышей проливает свет на то, как мозг регулирует обученные иммунные реакции
Комментариев нет. Будьте первым!