Впервые обнаружена квантовая вибрация в крупном объекте
Ничто в нашем мире не находится в состоянии абсолютного покоя. Даже при абсолютном нуле, когда термальные колебания материи заморожены, частички продолжают квантово вибрировать. Это тонкое дрожание было обнаружено в маленьком кремниевом бруске, который стал первым твердым объектом, продемонстрировавшем квантовые колебания.
Этот феномен, названный нулевыми колебаниями, является следствием принципа неопределенности Гейзенберга, который гласит, что чем больше известно о местоположении частицы в данный момент времени, тем меньше известно о скорости и направлении ее движения, и наоборот. До сегодняшнего дня, нулевая энергия наблюдалась напрямую в единичных атомах или в небольшом количестве частиц.
В новом эксперименте применялся кремниевый брусок, размером 12 микрометров в длину и менее микрометра в ширину. Оскар Пейнтер из Калифорнийского технологического института в Пасадене совместно с коллегами, охладил брусок практически до абсолютного нуля, после чего использовал лазер, чтобы обнаружить признаки его движения.
Некоторые фотоны этого лазера получили сдвиг энергии после того, как соприкоснулись с вибрирующим бруском. Обыкновенные термические колебания способны как увеличивать, так и уменьшать энергию фотона, но все обстоит иначе в случае с квантовыми колебаниями. Поскольку это наименьшее из возможных энергетических состояний, оно способно только поглощать энергию. Группа Пейнтера обнаружила, что отраженный свет находился на более низком энергетическом уровне, что является явным признаком квантовых колебаний.
Данная работа стала первой, в которой удалось продемонстрировать очень странное поведение нулевых флуктуаций. А именно: в этом состоянии, вещество способно только поглощать энергию. В классических системах, вероятность поглощения и испускания энергии одинакова.
Один из участников группы прокомментировал: "Мы продемонстрировали причину, по которой макроскопические (миллиарды атомов) объекты не могут быть охлаждены до абсолютного нуля. На каком-то этапе вы упираетесь в предел, дальше которого вещество способно исключительно на поглощение энергии и не способно отдавать ее. И если оно только поглощает энергию, то это делает невозможным его дальнейшее охлаждение. В этом и заключается феномен квантового колебания. Подобные эксперименты проводились и раньше, но в масштабах нескольких атомов: ничего достаточно крупного, видимого в микроскоп (в отличие от нашего эксперимента)".
Оригинал (на англ. языке): Newscientist
С этим материалом еще читают:
Паук является вторым существом самым чувствительным к вибрации
Вселенная является голограммой
Квантовая механика стала видна невооруженным глазом
Еще из категории технологии:
- IBM ускоряет обучение ИИ на скорости света при минимальном энергопотреблении
- Учёные впервые визуализировали форму одиночного фотона
- Солнечная система для зарядки электромобилей
- Крупнейший электрический самолёт взлетит в 2025 году
- ДНК-биочернила открывают новые горизонты для 3D-печати кровеносных сосудов
- Исследователи улучшили эффективность и долговечность солнечных элементов
- Тёмная материя: Как камера отслеживает невидимое
- Мягкий, растяжимый электрод имитирует тактильные ощущения с помощью электрических сигналов
Последние комментарии
Рассылка топовых новостей
Читательский топ
- Резьба на древнем памятнике может быть самым старым календарем в мире
- Что привело к сильному землетрясению на полуострове Ното в Японии в Новогодний день
- Космический корабль DART NASA навсегда изменил форму и орбиту лунного астероида
- Объяснено происхождение рентгеновского излучения от черных дыр
- Учёные предлагают рекомендации по исследованию солнечного геоинжиниринга
- Митохондрии выбрасывают свою ДНК в клетки нашего мозга
- Платформа искусственного интеллекта повышает точность диагностики рака легких
Комментариев нет. Будьте первым!