Объяснено происхождение рентгеновского излучения от черных дыр

Исследователи из Университета Хельсинки смоделировали взаимодействие излучения, плазмы и магнитных полей вокруг черных дыр, что позволило объяснить происхождение рентгеновского излучения от их окрестностей. Такой успех в исследованиях достигнут благодаря детальным суперкомпьютерным симуляциям. Оказалось, что хаотичные движения магнитных полей вызывают нагрев местной плазмы, заставляя ее излучать.
Результаты работы опубликованы в журнале Nature Communications. Черные дыры — это объекты, возникающие при коллапсе больших звезд в плотные массы, гравитация которых настолько велика, что не позволяет даже свету покинуть их. Из-за этого черные дыры можно наблюдать только через их косвенное воздействие на окружающую среду, включая формирование аккреционных дисков — ярких источников рентгеновского излучения, возникающих из-за постепенного спирального движения материи спутниковой звезды в черную дыру в двойных звездных системах.
Доцент Йонас Нятиля из группы исследований компьютерной плазменной астрофизики в Университете Хельсинки указывает, что вспышки в аккреционных дисках черных дыр аналогичны солнечным вспышкам, но происходят в более экстремальных условиях. Симуляции показали, что турбулентность вокруг черных дыр настолько сильна, что в игру вступают даже квантовые эффекты, критически важные для динамики плазмы.
В смеси электрон-позитронной плазмы и фотонов рентгеновское излучение может трансформироваться в электроны и позитроны, которые затем могут аннигилировать обратно в излучение. Эти квантовые явления, характерные для условий возле черных дыр, открывают новые перспективы для понимания взаимодействий между плазмой и излучением.
Исследование также показало, что плазма вокруг черных дыр может находиться в двух различных состояниях равновесия в зависимости от внешнего радиационного поля, что подтверждается рентгеновскими наблюдениями аккреционных дисков. Эти данные помогают уточнить модели поведения черных дыр и их влияние на окружающее пространство, что важно для будущих космических исследований и разработки стратегий защиты Земли от потенциальных астрономических угроз.
С этим материалом еще читают:
Беспрецедентно крупный кластер чёрных дыр обнаружен около центральной части Андромеды

Джеты далекой черной дыры показались в свечении от Большого Взрыва

Космическая тайна становится еще глубже: астрономы нашли объект, излучающий радиоволны и рентгеновское излучение

Еще из категории космос:
- Октябрьское небо: суперлуние и звездопады Драконид и Орионид
- Телескоп Джеймса Уэбба заглянул в сердце звездообразования в нашей Галактике
- NASA представило 10 новых астронавтов для миссий на Луну — и, возможно, на Марс
- Космический каннибал готовится к взрыву: сверхновая будет видна даже днем
- Солнце медленно просыпается: ученые фиксируют рост солнечной активности
- Маленькие красные точки телескопа Джеймса Уэбба могут оказаться звёздами-черными дырами
- Гравитационные волны подтвердили теории Эйнштейна и Хокинга: «Самый ясный взгляд на природу черных дыр»
- НАСА сообщило о возможных признаках древней жизни на Марсе: находка марсохода Perseverance
Последние комментарии
Рассылка топовых новостей
Читательский топ
- Против Дарвина: ученые обнаружили, что черви «переписали» свою ДНК, чтобы выжить на суше
- Новое средство против «неподдающихся лечению» форм рака выходит на клинические испытания
- Суперзаряженная вакцина: мощная защита после одной дозы
- Вакцина нового поколения: модифицированная мРНК «прикидывается» вирусом и усиливает иммунитет
- Популярный заменитель сахара может нарушать работу сосудов мозга и повышать риск инсульта
- Зимний морской лёд усиливает способность Южного океана поглощать CO₂
- Гипергравитация повышает продуктивность мха: японские учёные нашли ген, отвечающий за адаптацию
Комментариев нет. Будьте первым!